Как решать интегралы Ютуб

Аннотация: Задачи решаются с помощью простейших преобразований подынтегральной функции, правил интегрирования и использования таблицы основных интегралов.

Смотреть на youtube || на ИНТУИТ в качестве: низком | среднем | высоком


Дальше >>
< Лекция 1|| Практическая работа 1

Вопросы и ответы

Владислав Нагорный

Подскажите, пожалуйста, планируете ли вы возобновление программ высшего образования? Если да, есть ли какие-то примерные сроки?

Лариса Парфенова

1) Можно ли экстерном получить второе высшее образование «Программная инженерия» ?

2) Трудоустраиваете ли Вы выпускников?

3) Можно ли с Вашим дипломом поступить в аспирантуру?

Источник: intuit.ru

Что такое Интеграл

Интеграл — это математическая концепция, которая может быть двух типов:

Математика без ху%!ни. Интегралы, часть 1. Первообразная. Дифференцирование и интегрирование.

  • неопределённый интеграл — это функция, которая получается интеграцией (это процесс, противоположный дифференцированию);
  • определённый интеграл выражает область, которая находится ниже кривой графика неотрицательной функции f и между любыми двумя значениями a и b.

Определённый интеграл выражает область под кривой графика неотрицательной функции f между любыми двумя значениями a и b, как показано на этом рисунке:

площадь под кривой графика функции (по оси x минимальный a и максимальный b)

Интеграл, определённый между a и b, представлен как: f(x) dx

Неопределённый интеграл функции f — это другая функция F, полученная процессом, противоположным дифференцированию.

Дифференцирование в математике — это процесс, который превращает функцию f в другую функцию f’, называемую производной от f.

Например, нужно найти производную функции f(x) = cos x:

f’(x) = (cos x)’ = – sin x

Обозначение интеграла

Знак определённого интеграла:

Знак неопределённого интеграла: ∫

Основные свойства интегралов

формула интеграла интеграл формулы

Решение интегралов

Первообразная функция

Это функция, у которой производная функция равна исходной.

Функция F(x) является первообразной для производной функции f(x), если выполняется равенство F'(x) = f(x) (в диапазоне I).

  • F(x) = cos x — это первообразная функции f(x) = – sin x, т. к. (cos x)’ = – sin x;
  • F(x) = x³ — это первообразная функции f(x) = 3x², т. к. (x³)’ = 3x².

Важная деталь, о которой нужно помнить: первообразные функции не являются единственными! В предыдущем примере первообразная функции 3x² равна x³, но x³ + 1 также является первообразной той же функции (3x²), потому что (x³ + 1)’= 3x².

Это означает, что неопределённый интеграл функции f является множеством всех её первообразных функций и представлен так:

где С — произвольная постоянная.

Неопределённый интеграл

Неопределённый интеграл выглядит примерно так ∫ f(x) d(x) и обозначает множество всех первообразных некоторой функции f(x).

Если F — некоторая частная первообразная, то:

где С — произвольная постоянная.

Например, нужно вычислить неопределённый интеграл:

∫ (2x – 1) dx = ∫2x dx – ∫1dx = 2 (x²/2) – x + C = x² – x + C.

Определённый интеграл

Знак определённого интеграла, как неопределённый, но с a и b

Определённый интеграл выглядит примерно так: f(x) d(x).

Еще по теме:  Ютуб как выбрать участок

С помощью определённого интеграла можно вычислить площадь геометрической фигуры, которая находится под кривой. Отрезок [a;b] называется отрезком интегрирования. Вместо a и b подставляются значения X (минимального и максимального). Например, как на этом рисунке:

площадь под кривой графика функции (по оси x минимальный a и максимальный b)

Решение определённого интеграла (формула Ньютона-Лейбница):

f(x) dx = F(b) – F(a)

Например, нужно вычислить определённый интеграл:

(2 – x – x²) dx

1) Вычислить первообразную функцию

∫ (2 – x – x²) dx = 2x – x²/2 – x³/3 + C

2) Рассчитать верхний и нижний пределы (разницу между максимальным и минимальным значениями):

(2 – x – x²) dx = [2x – x²/2 – x³/3 + C] = [2(1) – 1²/2 – 1³/3 + C] – [2(-2) – (-2)²/2 – (-2)³/3 + C] = (2 – 1/2 – 1/3) – (-4 –2 + 8/3) = 2 – 1/2 – 1/3 + 4 + 2 – 8/3 = 9/2 = 4,5.

Относительно нашего примера график будет выглядеть таким образом (a = -2 и b = 1 (по оси x)):

график a = -2 и b = 1 (по оси x)

Значит, площадь того, что закрашено на рисунке (под графиком), будет равна 4,5.

Дата обновления 19/02/2021.

Источник: www.uznaychtotakoe.ru

Как решать интегралы ютуб

Загрузите приложение калькулятор интегралов для своего мобильного телефона, чтобы вы могли рассчитывать свои значения в своих руках.

Онлайн-калькулятор интегралов поможет вам вычислить интегралы функций по отношению к задействованной переменной и покажет вам полные пошаговые вычисления. Когда дело доходит до вычислений неопределенных интегралов, этот калькулятор первообразных позволяет мгновенно решать неопределенные интегралы. Теперь вы можете определить интегральные значения следующих двух интегралов с помощью онлайн-интеграл калькулятор:

  • Определенные интегралы
  • Неопределенные интегралы (первообразная)

Интегральный расчет довольно сложно решить вручную, так как он включает в себя различные сложные формулы интегрирования. Итак, рассмотрим интерактивный интегральный решатель, который решает простые и сложные функции решение интегралов онлайн и показывает вам пошаговые вычисления.

Итак, сейчас самое время понять формулы интегрирования, как интегрировать функцию шаг за шагом, с помощью калькулятора интегрирования и многое другое. Во-первых, давайте начнем с основ:

Что такое интеграл?

В математике интеграл функций описывает площадь, смещение, объем и другие понятия, которые возникают, когда мы объединяем бесконечные данные. В исчислении дифференцирование и интегрирование являются фундаментальной операцией и служат наилучшей операцией для решения физико-математических задач произвольной формы.

Вы также можете использовать бесплатную версию онлайн-калькулятора факторов, чтобы найти факторы, а также пары факторов для положительных или отрицательных целых чисел.

  • Процесс нахождения интегралов, называемый интегрированием
  • Интегрируемая функция называется подынтегральной функцией.
  • В интегральных обозначениях ∫3xdx, ∫ – символ интеграла, 3x – интегрируемая функция, а dx – дифференциал переменной x.

Где f (x) – функция, а A – площадь под кривой. Наш бесплатный калькулятор интегралов легко вычисляет интегралы и определяет площадь под заданной функцией. Что ж, теперь поговорим о типах интегралов:

Типы интегралов:

По сути, есть два типа интегралов:

  • Неопределенные интегралы
  • Определенные интегралы

Неопределенные интегралы:

определенный интеграл онлайн функции принимает первообразную другой функции. Взять первообразную функции – это самый простой способ обозначить неопределенные интегралы. Когда дело доходит до вычисления неопределенных интегралов, калькулятор неопределенных интегралов помогает выполнять вычисления неопределенных интегралов шаг за шагом. Этот тип интеграла не имеет верхнего или нижнего предела.

Определенные интегралы:

Определенный интеграл функции имеет начальное и конечное значения. Просто существует интервал [a, b], который называется пределами, границами или границами. Этот тип можно определить как предел интегральных сумм, когда диаметр разбиения стремится к нулю. Наш интеграл онлайн калькулятор определенных интегралов с оценками вычисляет интегралы, учитывая верхний и нижний предел функции. Разницу между определенным и неопределенным интегралами можно понять по следующей диаграмме:

Еще по теме:  Как отключить историю просмотров на ютубе

Основные формулы для интеграции:

Существуют разные формулы для интеграции, но здесь мы перечислили некоторые общие:

  • ∫1 dx = x + c
  • ∫xn dx = xn + 1 / n + 1 + c
  • ∫a dx = ax + c
  • ∫ (1 / х) dx = lnx + c
  • ∫ ax dx = ax / lna + c
  • ∫ ex dx = ex + c
  • ∫ sinx dx = -cosx + c
  • ∫ cosx dx = sinx + c
  • ∫ tanx dx = – ln | cos x | + c
  • ∫ cosec2x dx = – детская кроватка x + c
  • ∫ sec2x dx = tan x + c
  • ∫ cotx dx = ln | sinx | + c
  • ∫ (secx) (tanx) dx = secx + c
  • ∫ (cosecx) (cotx) dx = -cosecx + c

Помимо этих уравнений интегрирования, есть еще несколько важных формул интегрирования, которые упомянуты ниже:

  • ∫ 1 / (1-x2) 1/2 dx = sin-1x + c
  • ∫ 1 / (1 + x2) 1/2 dx = cos-1x + c
  • ∫ 1 / (1 + x2) dx = tan-1x + c
  • ∫ 1 / | x | (x2 – 1) 1/2 dx = cos-1x + c

Запоминание всех этих формул интегрирования и выполнение вычислений вручную – очень сложная задача. Просто введите функцию в предназначенное для этого поле онлайн-калькулятор интегралов, который использует эти стандартизированные формулы для точных вычислений.

Как решать интегралы вручную (шаг за шагом):

Большинство людей раздражается начинать с вычислений интегральной функции. Но здесь мы собираемся решать интегральные примеры шаг за шагом, что поможет вам разобраться, как легко интегрировать функции! Итак, это точки, которым нужно следовать для вычисления решение интегралов онлайн:

  • Определить функцию f (x)
  • Возьмите первообразную функции
  • Вычислить верхний и нижний предел функции
  • Определите разницу между обоими пределами

Если вас интересует вычисление первообразной (неопределенного интеграла), тогда возьмите онлайн-калькулятор первообразной, который быстро решит первообразную данной функции.

Смотрит на примеры:

Пример 1:

Решить интегралы от ∫ x3 + 5x + 6 dx?

Решение:

Шаг 1:

Применяя правило функциональной мощности для интегрирования:

∫xn dx = xn + 1 / n + 1 + c

∫ x3 + 5x + 6 dx = x3 + 1/3 + 1 + 5 x1 + 1/1 + 1 + 6x + c

Шаг 2:

∫ x3 + 5x + 6 dx = x4 / 4 + 5 x2 / 2 + 6x + c

Шаг 3:

∫ x3 + 5x + 6 dx = x4 + 10×2 + 24x / 4 + c

Этот калькулятор неопределенного интеграла помогает интегрировать интеграл калькулятор функции шаг за шагом, используя формулу интегрирования.

Пример 2 (Интеграл логарифмической функции):

Вычислить ∫ ^ 1_5 xlnx dx?

Решение:

Шаг 1:

Прежде всего, разместите функции согласно правилу ILATE:

Шаг 2:

Теперь используя формулу для интегрирования по частям i; e:

∫u.v dx = u∫vdx – ∫ [∫vdx d / dx u]

Шаг 3:

∫ ^ 1_5 x * lnx dx = [lnx∫xdx – ∫ [∫xdx d / dx lnx]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – ∫ [x2 / 2 1 / x]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – ∫ [x / 2]] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1 / 2∫ x] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1/2 x2 / 2] ^ 1_5

∫ ^ 1_5 x * lnx dx = [lnx x2 / 2 – 1/4 x2] ^ 1_5

∫ ^ 1_5 x * lnx dx = [ln1 (1) 2/2 – 1/4 (1) 2] – [ln5 (5) 2/2 – 1/4 (5) 2]

Еще по теме:  Что посмотреть в поезде из Ютуба

∫ ^ 1_5 x * lnx dx = [0 (0) / 2 – 1/4 (1)] – [1,60 (25) / 2 – 1/4 (25)]

∫ ^ 1_5 x * lnx dx = [0 – 1/4] – [40/2 – 25/4]

∫ ^ 1_5 x * lnx dx = [- 1/4] – [20 – 6.25]

∫ ^ 1_5 x * lnx dx = – 0,25 – 13,75

∫ ^ 1_5 x * lnx dx = –14

Поскольку это очень сложно для решения интегралов, когда две функции умножаются друг на друга. Для удобства просто введите функции в онлайн-калькулятор интегралов по частям, который помогает выполнять вычисления двух функций (по частям), которые точно умножаются друг на друга.

Пример 3 (Интеграл от тригонометрической функции):

Вычислить определенный интеграл для ∫sinx dx с интервалом [0, π / 2]?

Решение:

Шаг 1:

Используйте формулу для тригонометрической функции:

∫ sinx dx = -cosx + c

Шаг 2:

Вычислите верхний и нижний предел для функций f (a) и f (b) соответственно:

Поскольку a = 0 и b = π / 2

Итак, f (a) = f (0) = cos (0) = 1

f (b) = f (π / 2) = cos (π / 2) = 0

Шаг 3:

Рассчитайте разницу между верхним и нижним пределами:

Теперь вы можете использовать бесплатный калькулятор частичных интегралов для проверки всех этих примеров и просто добавлять значения в поля назначения для мгновенного вычисления интегралов.

Как найти первообразную и вычислить интегралы с помощью калькулятора интегралов:

Вы можете легко вычислить интеграл от определенных и неопределенных функций с помощью лучшего интегратора. Вам просто нужно следовать указанным пунктам, чтобы получить точные результаты:

Входы:

  • Во-первых, введите уравнение, которое вы хотите интегрировать.
  • Затем выберите зависимую переменную, входящую в уравнение
  • Выберите на вкладке определенный или определенный интеграл онлайн
  • Если вы выбрали конкретный вариант, то вам следует ввести нижнюю и верхнюю границу или предел в предназначенное для этого поле.
  • После этого пора нажать на кнопку расчета.

Выходы:

Интегральный оценщик показывает:

  • Определенный интеграл
  • неопределенный интеграл онлайн
  • Выполните пошаговые расчеты

Часто задаваемые вопросы (FAQ):

Какое целое значение?

В математике интеграл – это числовое значение, равное площади под графиком некоторой функции на некотором интервале. Это может быть график новой функции, производная которой является исходной функцией (калькулятор неопределенных интегралов). Итак, для мгновенных и быстрых вычислений вы можете использовать бесплатный интеграл онлайн калькулятор первообразных, который позволяет вам решать неопределенные интегральные функции.

Как вы оцениваете интеграл, используя основную теорему исчисления?

Прежде всего, мы должны найти первообразную функции, чтобы решить интеграл, используя фундаментальную теорему. Затем используйте основную теорему исчисления для вычисления решение интегралов онлайн. Или просто введите значения в предназначенное для этого поле этого калькулятора интеграции и мгновенно получите результаты.

Что такое двойной интеграл?

Двойные интегралы – это способ интегрирования по двумерной области. Двойные интегралы позволяют вычислить объем поверхности под кривой. Они имеют две переменные и рассматривают функцию f (x, y) в трехмерном пространстве.

Заключительные слова:

Интегралы широко используются для улучшения архитектуры зданий, а также для мостов. В электротехнике его можно использовать для определения длины силового кабеля, необходимого для соединения двух станций, находящихся на расстоянии нескольких миль друг от друга. Этот онлайн-калькулятор интегралов лучше всего подходит для школьного образования, который легко интеграл калькулятор любой заданной функции шаг за шагом.

Источник: calculator-online.net

Рейтинг
( Пока оценок нет )
Загрузка ...