В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.
Определение
Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:
a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.
Ниже приведены несколько примеров:
- 10x + 25y = 180.
- x — y = 6.
- -6x + y = 7.
Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.
Решение задач
Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?
Для наглядности объяснений подберем корни для выражения: y-x = 6.
При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).
Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.
У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9
Приведем исходное равенство к следующему виду:
В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.
При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.
Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.
- 20y — 3x = 16;
- -3x = 16−20y.
Оба равенства равносильны.
Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.
- y — x = 6*2;
- 2y — 2x = 12.
Оба уравнения также равносильны.
Система уравнений с двумя неизвестными
Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.
Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.
Решить подобные системы уравнений можно, применяя следующие методы.
Метод подстановки
- Выражаем неизвестное из любого равенства через вторую переменную.
- Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
- Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.
Метод сложения
- Приводим к равенству модули чисел при каком-либо неизвестном.
- Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
- Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.
Графический метод
- Выражаем в каждом равенстве одну переменную через другую.
- Строим графики двух имеющихся уравнений в одной координатной плоскости.
- Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
- Делаем проверку, подставив полученные значения в исходную систему равенств.
При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.
В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.
Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!
Видео
Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.
Поставь лайк, это важно для наших авторов, подпишись на наш канал в Яндекс.Дзен и вступай в группу Вконтакте
Источник: liveposts.ru
Уравнения
Если вы это читаете, значит вас интересует вопрос решения уравнений.
Да, наши калькуляторы могут решить все уравнения, которые встречаются в школьном курсе и не только. Но нужно понимать, что большинство уравнений имеют несколько способов решения, а калькулятор выдает лишь только какое-то одно.
Бесспорно все способы решения хороши по-своему, но каждому методу отводится свое место в программе обучения.
Поэтому не стоит злоупотреблять калькуляторами, если ваш школьный учитель или личный репетитор требует решить уравнение одним способом, а вы предоставляете ему альтернативное решение.
Да, это может быть похвально, но опытный педагог сразу поймет, что решение уравнения не ваше.
Калькулятор решения уравнений
Калькулятор уравнений незаменимый помощник. Именно помощник, а не решатель проблем. Всегда старайтесь своими силами решать уравнения, а калькулятор используйте в качестве проверки вашего ответа.
Для грамотного учителя не столько важен конечный ответ, сколько сам ход решения уравнения.
Как вы могли заметить, при решении некоторых уравнений, например, квадратных, калькулятор может выполнить три разных способа решения. Это разложение уравнения на множители, выделение полного квадрата или найти корни уравнения через дискриминант.
Попытайтесь сначала самостоятельно решить заданное уравнение, вспомните чему вас учили на уроке.
Даже если вы ошибетесь в числах, то ничего страшного, ученик имеет право на ошибку, главное правильно мыслить.
С нашим калькулятором уравнений вы с легкостью исправите допущенную в вычислениях ошибку.
- Полезные статьи
Источник: math24.biz
Решение рациональных уравнений
Рациональные уравнения — это уравнения, содержащие в себе рациональные выражения.
Определение 1
Рациональными выражениями при этом являются выражения, которые возможно записать в виде обыкновенной дроби вида $frac$, при этом $m$ и $n$ — целые числа и $n$ не может быть равно нулю. К рациональным выражениям относятся не только выражения, содержащие дроби вида $frac$, но и выражения, содержащие только целые числа, так как любое целое число можно представить в виде неправильной дроби.
Теперь рассмотрим более подробно, что же такое рациональные уравнения.
Как мы уже упомянули выше, рациональные уравнения — это уравнения, содержащие в себе рациональные выражения и переменные.
Соответственно тому, на каком именно месте стоит переменная в рациональном уравнении, оно может быть либо дробным рациональным уравнением, либо целым рациональным уравнением.
Дробные уравнения могут содержать дробь с переменной только в какой-то одной части уравнения, тогда как целые уравнения не содержат дробных выражений с переменной.
Целые рациональные уравнения примеры: $5x+2= 12$; $3y=-7(-4y + 5)$; $7a-14=256$.
Дробно-рациональные уравнения примеры: $frac+frac=frac$; $frac=5$;
Стоит отметить, что дробно-рациональными уравнениями называются только уравнения, содержащие дробь в знаменателе, так как уравнения, содержащие дробные выражения без переменных, легко сводятся к линейным целым уравнениям.
Как решать рациональные уравнения?
В зависимости от того, имеете ли вы дело с целым рациональным уравнением или с дробным, применяются несколько разные алгоритмы для решения.
Алгоритм решения целых рациональных уравнений
- В начале необходимо определить наименьший общий знаменатель для всего равенства.
- Затем нужно определить множители, на которые нужно домножить каждый член равенства.
- Следующий этап — приведение к общему знаменателю всего равенства.
- Наконец, осуществление поиска корней полученного целого рационального равенства.
«Решение рациональных уравнений»
Готовые курсовые работы и рефераты
Решение учебных вопросов в 2 клика
Помощь в написании учебной работы
Сначала найдём общий множитель — в данном случае это число $4$. Для того чтобы избавиться от знаменателя, домножим левую часть на $frac$, получаем:
$10x+18=x$ — полученное уравнение является линейным, его корень $x=-2$.
Как решать дробно-рациональные уравнения?
В случае с дробными рациональными уравнениями порядок решения похож на алгоритм для решения целых рациональных, то есть сохраняются пункты 1-4, но после нахождения предполагаемых корней в случае использования неравносильных преобразований корни требуется проверить, подставив в уравнение.
Решите дробно-рациональное уравнение: $frac+frac=frac$
Для того чтобы привести дробь к общему знаменателю, здесь это $x cdot (x-5)$, домножим каждую дробь на единицу, представленную в виде необходимого для приведения к общему знаменателю множителя:
Теперь, когда вся дробь имеет общий знаменатель, от него можно избавиться:
Воспользуемся теоремой Виета для решения получившегося квадратного уравнения:
$begin x_1 + x_2 = 3 \ x_1 cdot x_2 = -10 \ end$
Так как преобразование, использовавшееся для упрощения уравнения, не является равносильным, полученные корни необходимо проверить в исходном уравнении, для этого подставим их:
$frac=frac$ — следовательно, корень $x_2=-2$ — верный.
Здесь сразу видно, что в знаменателе образуется нуль, следовательно, корень $x_1=5$ — посторонний.
Необходимо помнить, что в случае, если уравнение, содержащее в левой или правой части выражение вида $frac$ равно нулю, равен нулю может быть только числитель дроби. Это происходит из-за того, что, если где-то в знаменателе образуется нуль, проверяемый корень не является корнем уравнения, так как всё равенство теряет смысл в этом случае. Корни, приводящие знаменатель к нулю, называются посторонними.
В случае если дробно-рациональное уравнение имеет довольно сложную форму, для его дальнейшего упрощения и решения возможно использовать замену части уравнения на новую переменную, наверняка вы уже видели примеры таких дробно-рациональных уравнений:
Для упрощения решения введём переменную $t= x^2+3x$:
Общий знаменатель здесь $5 cdot (t-3)(t+1)$, домножим на необходимые множители все части уравнения чтобы избавиться от него:
Через дискриминант вычислим корни:
Так как мы использовали неравносильные преобразования, необходимо проверить полученные корни в знаменателе, они должны удовлетворять условию $5(t-3)(t+1)≠0$. Оба корня соответствуют этому условию.
Теперь подставим полученные корни вместо $t$ и получим два уравнения:
По теореме Виета корни первого уравнения $x_1=-4; x_2=1$, корни второго же вычислим через дискриминант и имеем $x_=frac>>$.
Все корни уравнения составят: $x_1=-4; x_2=1, x_=frac>>$.
Преобразования для упрощения формы уравнения
Как вы уже могли увидеть выше, для решения рациональных уравнений используют различные преобразования.
Различают преобразования уравнений двух видов: равносильные (тождественные) и неравносильные.
Преобразования называются равносильными, если они приводят к уравнению нового вида, корни которого такие же, как у первоначального.
Тождественные преобразования, которые можно использовать для изменения вида первоначального уравнения без каких-либо проверок в дальнейшем, следующие:
- Умножение или деление всего уравнения на какое-либо число, отличное от нуля;
- Перенос частей уравнения из левой части в правую и наоборот.
Неравносильными преобразованиями называются преобразования, в ходе которых могут появиться посторонние корни. К неравносильным преобразованиям относят:
- Возведение обеих частей уравнения в квадрат;
- Избавление от знаменателей, содержащих переменную;
Корни рациональных уравнений, решённых с помощью неравносильных преобразований, необходимо проверять подстановкой в исходное уравнение, так как при неравносильных преобразованиях могут появиться посторонние корни. Не всегда неравносильные преобразования приводят к появлению посторонних корней, но всё же необходимо это учитывать.
Решение рациональных уравнений со степенями больше двух
Наиболее часто используемыми методами для решения уравнений со степенями больше двух являются метод замены переменной, рассмотренный нами выше на примере дробно-рационального уравнения, а также метод разложения на множители.
Рассмотрим более подробно метод разложения на множители.
Пусть дано уравнение вида $P(x)= 0$, при этом $P(x)$ — многочлен, степень которого больше двух. Если данное уравнение возможно разложить на множители так, что оно принимает вид $P_1(x)P_2(x)P_3(x)..cdot P_n(x)=0$, то решением данного уравнения будет множество решений уравнений $P_1(x)=0, P_2(x)=0, P_3(x)=0. P_n(x)=0$.
Решите уравнение: $x^3+2x^2+3x+6=0$
Вынесем общие множители:
После разложения на множители нужно решить уравнения $x+2=0$ и $x^2+3=0$. Корень первого $x=-2$, второе уравнение корней не имеет, поэтому $x=-2$ — в данном случае окончательный ответ.
Определение 2
Уравнения, в которых коэффициент при переменной со старшей степенью равен единице, называются приведёнными.
Для приведённых уравнений справедливо следующее:
Если такое уравнение с целыми коэффициентами при переменных имеет рациональный корень, то этот корень непременно является целым числом.
Благодаря такому свойству этих уравнений их можно решать перебором целых делителей свободного члена.
Для тех, кто не помнит: свободный член уравнения — это член уравнений, не содержащий при себе в качестве множителя переменную. При этом найдя один из корней такого уравнения, его можно использовать для дальнейшего разложения уравнения на множители.
Делителями свободного члена будут числа $±1, ±2, ±3, ±4, ±6, ±8, ±12$ и $±24$. При их проверке подходящим корнем оказался $x=2$. Это значит, что данный многочлен можно разложить с использованием этого корня: $(x-2)(x^2+6+12)=0$.
Многочлен во второй паре скобок корней не имеет корней, значит, единственным корнем данного уравнения будет $x=2$.
Другим типом уравнений со степенью больше двух являются биквадратные уравнения вида $ax^4+bx^2+ c=0$. Такие уравнения решаются путём замены $x^2$ на $y$, применив её, получаем уравнение вида $ay^2+y+c=0$, а после этого полученное значение новой переменной используют для вычисления исходной переменной.
Также существует ещё один тип уравнений, называемый возвратным. Такие уравнения выглядят так: $ax^4+bx^3+cx^2+bx+a=0$. Такое название они имеют из-за повторения коэффициентов при старших степенях и младших.
Источник: spravochnick.ru