Сколько существует способов чтобы можно было выбрать из 10 одноклассников

Давайте сначала выясним, чем отличаются размещения от сочетаний? В сочетаниях порядок элементов не важен, а размещениях – важен!

Задача 1. Из 15 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?

Решение: каждый выбор отличается от другого хотя бы одним дежурным. Значит, здесь речь идет о сочетаниях из 15 элементов по 3. Следовательно, по формуле получаем

Задача 2. В магазине «Филателия» продается 8 различных марок, посвященных спортивной тематике. Сколькими способами можно выбрать из них 3 набора?

Задача 3. На полке стоит 12 книг: англо-русский словарь и 11 художественных произведений на английском языке. Сколькими способами читатель может выбрать 3 книги, если :

а) словарь нужен ему обязательно;

б) словарь ему не нужен?

Задача 4. В классе учатся 16 мальчиков и 12 девочек. Для уборки территории требуется выделить четырех мальчиков и трех девочек. Сколькими способами это можно сделать?

Задача 5. На тренировках занимаются 10 баскетболистов. Сколько различных стартовых пятерок может образовать тренер?

У школьников отберут мобильные телефоны

Задача 6. Сколько наборов из семи пирожных можно составить, если в продаже имеется четыре сорта пирожных?

Задача 7. Сколько существует различных треугольников, длины сторон которых принимают значения: 8, 10, 12 и 14 см? Сколько среди них равносторонних, равнобедренных, разносторонних?

Решение: число различных треугольников равно числу сочетаний с повторениями из четырех элементов по три:

Из них количество разносторонних треугольников равно числу сочетаний без повторений их четырех элементов по три, т.е.

. Количество равносторонних треугольников – 4, а равнобедренных треугольников: 20 – 4 – 4=12.

Задача 8. Сколько всего существует результатов опыта, заключающегося в подбрасывании двух одинаковых игральных костей?

Задача 9. В почтовом отделении продаются открытки 10 сортов. Сколькими способами можно купить в нем 12 открыток? 8 открыток? 8 различных открыток?

293 930 способами.

— Что нового вы сегодня узнали на уроке?

— Чем отличаются сочетания от размещений? (сочетания – порядок не важен, размещения – порядок важен!)

Урок 10. Урок-практикум. Подготовка к контрольной работе

· подготовить учащихся к контрольной работе с помощью решения задач и повторения некоторых теоретических вопросов;

Оборудование: карточки с задачами.

1. Сообщение темы и целей

Сегодня на уроке мы будем готовиться к контрольной работе: решать задачи и повторять теорию

2. Домашнее задание

Подготовиться к контрольной работе

Заполнить пропуски:

1. Если некоторый объект А можно выбрать mспособами, а другой объект В можно выбрать nспособами, то выбор «либо А, либо В» можно осуществить … способами. (m+n)

2. Кортежи длины k, составленные из элементов п-множества, называют размещениями … из п элементов по k. (с повторениями)

3. Два … из п элементов по т отличаются друг от друга хотя бы одним элементом. (сочетания)

Этот способ всегда работает! Годный лайфхак проверил!

Решить задачи:

1. «Вороне где-то Бог послал кусочек сыра», колбасы, хлеба и шоколада. «На ель Ворона взгромоздясь, позавтракать совсем уж было собралась, да призадумалась»: если есть кусочки по очереди, то из скольких вариантов придется выбирать?

Еще по теме:  Как поставить замок на альбом в Одноклассниках

2. Сколькими способами можно из 25 учащихся выбрать 5 для участия в школьном марафоне?

3. Сколькими способами могут быть распределены золотая и серебряная медали по итогам первенства по футболу, если число команд 12?

4. В классе 7 человек успешно занимаются математикой. Сколькими способами можно выбрать из них двоих для участия в математической олимпиаде?

5. Из 12 солдат нужно в разведку послать 5. Сколькими способами это можно сделать?

6. Учащимся дали список из 10 книг, которые рекомендуется прочитать во время каникул. Сколькими способами ученик может выбрать из этого списка 6 книг?

7. Назовем симпатичными числа, в записи которых используют только нечетные числа. Сколько существует четырехзначных симпатичных чисел?

8. Сколько пятизначных чисел можно составить, используя только цифры 3 и 5?

9. «Проказница Мартышка, Осел, Козел и косолапый Мишка затеяли сыграть квартет». Сколькими способами они могут распределить четыре имеющихся у них инструмента?

10. «Проказница Мартышка, Осел, Козел и косолапый Мишка затеяли сыграть квартет». На складе 12 музыкальных инструментов. Мишке поручили принести со склада 8 любых инструментов. Сколько вариантов выбора есть у мишки?

11. Гера, Афина и Афродита попросили Париса не только назвать самую красивую из них, но и указать, кто «на втором и третьем местах». Сколько есть вариантов ответа?

12. Из 15 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?

13. В магазине «Филателия» продается 8 различных наборов марок, посвященных «Дню Победы». Сколькими способами можно сформировать из них 3 набора?

14. Сколько существует способов составить расписание уроков на один день из 6 предметов?

15. Алфавит племени тумба-юмба состоит из букв А, У, С. Словом является любая последовательность из 4 букв. Сколько слов в языке этого племени?

16. Сколькими способами можно выложить в ряд красный, зеленый, черный, синий кубики?

17. Из колоды в 36 карт вынимают 5 карт. Найдите число всех возможных вариантов выбора.

18. В классе 27 учеников, из которых нужно выбрать троих: первый ученик должен решить задачу, второй – сходить за мелом, третий – пойти дежурить в столовую. Сколькими способами это можно сделать?

Ответы и решения к задачам

Источник: smekni.com

Сколько существует способов выбора трех студентов из 10 на конференцию?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

  • Обратная связь
  • Правила сайта

Источник: www.soloby.ru

Сколько существует способов чтобы можно было выбрать из 10 одноклассников

Задача 1:

Из класса, в котором учатся 30 человек, нужно выбрать двоих школьников для участия в математической олимпиаде. Сколькими способами это можно сделать?

Еще по теме:  Продвижение в Одноклассниках отзывы

Решение:

Первого ученика можно выбрать 30 способами, второго, независимо от выбора первого ученика, – 29 способами. При этом каждая пара учитывается дважды. Поэтому ответ: 30 • 29/2 = 435 способов.

Задача 2:

Сколькими способами можно выбрать команду из трех школьников в классе, в котором учатся 30 человек?

Решение:

Первого ученика можно выбрать 30 способами, второго – 29 способами, третьего – 28 способами. Таким образом получаем 30 • 29 • 28 вариантов выбора. Однако каждая команда при этом подсчете учтена несколько раз: одна и та же тройка учеников может быть выбрана по разному, например, сначала А, потом В, потом С или сначала С, потом А, потом В и т.д. Поскольку число перестановок из трех элементов равно 3!, то каждая команда учтена нами ровно 3! = 6 раз. Поэтому равно (30 • 29 • 28)/3!.

Задача 3:

Сколькими способами можно выбрать 4 краски из имеющихся 7 различных?

Решение:

Задача 4:

У одного школьника есть 6 книг по математике, а у другого – 8. Сколькими способами они могут обменять три книги одного на три книги другого?

Решение:

Первый школьник может выбрать 3 книги для обмена способами, второй – способами. Таким образом, число возможных обменов равно .

Задача 5:

В шахматном кружке занимаются 2 девочки и 7 мальчиков. Для участия в соревновании необходимо составить команду из четырех человек, в которую обязательно должна входить хотя бы одна девочка. Сколькими способами это можно сделать?

Решение:

В команду входит либо одна девочка, либо две. Разберем оба случая. Если в команде две девочки, то двух мальчиков к ним можно добавить способами. Если же в команду входит только одна девочка (ее можно выбрать двумя способами), то команду можно дополнить тремя мальчиками различными способами. Таким образом, общее число возможных команд равно .

Задача 6:

Сколькими способами можно разбить 10 человек на две баскетбольные команды по 5 человек в каждой?

Решение:

Первую команду можно выбрать способами. Этот выбор полностью определяет вторую команду. Однако при таком подсчете каждая пара команд А и В учитывается дважды: один раз, когда в качестве первой команды выбирается команда А, и второй, – когда в качестве первой команды выбирается команда В. Таким образом, ответ: .

Задача 7:

На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

Решение:

Задача 8:

Рота состоит из трех офицеров, шести сержантов и 60 рядовых. Сколькими способами можно выделить из них отряд, состоящий из офицера, двух сержантов и 20 рядовых?

Решение:

(n 8 + 1)(n 8 – 1) = n 16 – 1 = 0 (mod 17).

Задача 9:

На прямой отмечено 10 точек, а на параллельной ей прямой – 11 точек. Сколько существует а) треугольников; б) четырехугольников с вершинами в этих точках?

Решение:

Задача 10:

Еще по теме:  Как в Одноклассниках создать слайд шоу

Сколькими способами можно выбрать из 15 различных слов набор, состоящий не более чем из 5 слов?

Решение:

Задача 11:

Сколькими способами можно составить комиссию из 3 человек, выбирая ее членов из 4 супружеских пар, но так, чтобы члены одной семьи не входили в комиссию одновременно?

Решение:

Выберите сначала семьи, а потом в каждой паре конкретного представителя. Ответ: .

Задача 12:

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Решение:

Разберите три случая: в команду входит только Петя; в команду входит только Ваня; оба они в команду не входят. Ответ: .

Задача 13:

Сколькими способами можно переставить буквы слова «ЭПИГРАФ» так, чтобы и гласные, и согласные шли в алфавитном порядке?

Решение:

Все определяется местами, на которых стоят гласные буквы. Ответ: .

Задача 14:

Из 12 девушек и 10 юношей выбирают команду, состоящую из пяти человек. Сколькими способами можно выбрать эту команду так, чтобы в нее вошло не более трех юношей?

Решение:

Задача 15:

Сколькими способами можно расставить 12 белых и 12 черных шашек на черных полях шахматной доски?

Решение:

Задача 16:

а) Сколькими способами можно разбить 15 человек на три команды по 5 человек в каждой?

б) Сколькими способами можно выбрать из 15 человек две команды по 5 человек в каждой?

Решение:

Задача 17:

Сколькими способами можно выбрать из полной колоды (52 карты) 10 карт так, чтобы

а) среди них был ровно один туз?

б) среди них был хотя бы один туз?

Решение:

а) ; б) Перейдите к дополнению. Ответ: .

Задача 18:

Сколько существует 6-значных чисел, у которых по три четных и нечетных цифры?

Решение:

Разберите случаи в соответствии с тем, цифра какой четности стоит на первом месте. Затем в каждом случае выберите места для нечетных цифр. Ответ: .

Задача 19:

Сколько существует 10-значных чисел, сумма цифр которых равна а) 2; б) 3; в) 4?

Решение:

Разберите все возможные представления чисел 2, 3, 4 в виде суммы нескольких натуральных слагаемых. Не забывайте, что первая цифра – не ноль. Ответ: а) 10; б) ; в) .

Задача 20:

Человек имеет 6 друзей и в течение 5 дней приглашает к себе в гости каких-то троих из них так, чтобы компания ни разу не повторялась. Сколькими способами он может это сделать?

Решение:

Задача 21:

Как известно, для участия в лотерее «Спортлото» нужно указать шесть номеров из имеющихся на карточке 45 номеров.

а) Сколькими способами можно заполнить карточку «Спортлото»?

б) После тиража организаторы лотереи решили подсчитать, каково число возможных вариантов заполнения карточки, при которых могло быть угадано ровно три номера. Помогите им в этом подсчете.

Решение:

Задачная база >> Разное >> Математический кружок. 2-й год >> Комбинаторика-2 >> Числа сочетаний Убрать решения

Источник: zaba.ru

Рейтинг
( Пока оценок нет )
Загрузка ...