Ютуб как сделать зарядное устройство

Содержание

зарядное устройство для авто

Slark Energy - интернет-журнал об альтернативной энергии

Автоматические устройства представляют простую конструкцию, но очень надежную в работе. Создана их конструкция при использовании простого трансформатора без лишних электронных дополнений. Они рассчитаны на простую зарядку аккумуляторов любых транспортных средств.

Минусы:

  1. Отсутствие какой-либо защиты.
  2. Исключение режима разрядки и возможности проведения восстановления аккумуляторной батареи.
  3. Тяжелый вес.
  4. Достаточно высокая стоимость.

схема акб

Состоит классический зарядный прибор из следующих ключевых элементов:

Как сделать простейшее зарядное устройство.

Такой прибор вырабатывает постоянный ток под напряжением 14,4в, а не 12в. Поэтому согласно законам физики, невозможно зарядить одно устройство другим, если напряжение у них одинаковое. Руководствуясь вышесказанным, оптимальным значением для такого устройства является 14.4 Вольта.

Ключевыми компонентами любого зарядного устройства считаются:

  • трансформатор;
  • сетевая вилка;
  • предохранитель (осуществляет защиту от короткого замыкания);
  • проволочный реостат (осуществляет регулировку силы зарядного тока);
  • амперметр (показывает силу электрического тока);
  • выпрямитель (преобразовывает переменный в постоянный ток);
  • реостат (регулирует силу тока, напряжение в электрической цепи);
  • лампочка;
  • включатель;
  • корпус;

Провода для подключения

Для присоединения любого зарядного устройства используют, как правило, красный и черный провода, красный – это плюс, черный – минус.

При выборе кабелей, для подключения зарядного или пускового устройства, необходимо выбирать сечение не меньше 1 мм 2.

Внимание. Дальнейшая информация выложена в ознакомительных целях. Все что вы захотите воплотить в жизнь, вы делаете на свое усмотрение. Неправильное или неумелое обращение с теми или иными запчастями и приборами приведет их в неисправность.

Посмотрев доступные виды зарядных устройств, перейдем непосредственно к изготовлению своими руками.

Зарядка для АКБ из блока питания компьютера

Для зарядки любого аккумулятора хватит 5-6 ампер-часов, это является около 10% от емкости всей батареи. Произвести его, может, любой блок питания емкостью от 150 Вт.

Итак, рассмотрим 2 способа самостоятельного изготовления зарядного устройства из компьютерного блока питания.

Способ первый

зарядка из блока питания

Для изготовления нужны следующие детали:

  • блок питания, мощностью от 150 Вт;
  • резистор 27 кОм;
  • регулятор тока R10 или блок резисторов;
  • провода длиной от 1 метра с клеммами;

Ход выполнения работ:

  1. Для начала нам потребуется разобрать блок питания.
  2. Извлекаем неиспользуемые нами провода, а именно -5в, +5в, -12в и +12в.
  3. Совершаем замену резистора R1 на заранее заготовленный резистор 27 кОм.
  4. Удаляем провода 14 и 15, а 16 просто отключаем.
  5. Из блока выводим сетевой шнур и провода к аккумуляторной батарее.
  6. Устанавливаем регулятор тока R10. В отсутствие такого регулятора, можно изготовить самодельный блок резисторов. Состоять будет он из двух резисторов 5 Вт, которые будут соединены параллельно.
  7. Для настройки зарядного устройства, в плату устанавливаем переменный резистор.
  8. К выходам 1,14,15,16 припаиваем провода, а резистором устанавливаем напряжение 13,8-14,5в.
  9. На окончание проводов присоединяем клеммы.
  10. Остальные ненужные дорожки удаляем.

Важно: придерживайтесь полного руководства, малейшее уклонение может привести к перегоранию прибора.

Способ второй

зарядка для акб из блока питания

Для изготовления нашего устройства по данному способу, потребуется блок питания немного мощнее, а именно на 350 Вт. Так как он может выдать 12-14 ампер, что удовлетворит наши потребности.

Ход выполнения работ:

  1. В блоках питания от компьютера импульсный трансформатор имеет несколько обмоток, Одна из них на 12в, а вторая на 5в. Для изготовления нашего устройства нужна только обмотка на 12в.
  2. Для запуска нашего блока потребуется найти зеленый провод и замкнуть его с черным проводом. При использовании дешевого китайского блока, возможно, там будет не зеленый, а серый провод.
  3. Если у вас блок питания старого образца с кнопкой включения, вышеуказанная процедура не нужна.
  4. Далее, составляем из желтых и черных проводов 2 толстые шины, а ненужные провода обрезаем. Черная шина будет минусом, желтая соответственно плюсом.
  5. Для повышения надежности нашего устройства можно осуществить замену местами диодов. Дело в том, что на 5в шине стоит более мощный диод, чем на 12в.
  6. Так как в блоке питания стоит встроенный вентилятор, то ему не страшны перегревы.

Способ третий

блок питания

Для изготовления нам потребуются следующие детали:

  • блок питания, мощностью 230 Вт;
  • плата с микросхемой TL 431;
  • резистор 2,7 кОм;
  • резистор 200 Ом мощностью 2 Вт;
  • резистор 68 Ом мощностью 0,5 Вт;
  • резистор 0,47 Ом мощностью 1 Вт;
  • реле на 4 контакта;
  • 2 диода 1N4007 или подобные диоды;
  • резистор 1кОм;
  • светодиод яркого цвета;
  • длина провода не менее 1 метра и сечением не меньше 2,5 мм 2, с клеммами;

Ход выполнения работ:

  1. Выпаиваем все провода кроме 4 черных и 2 желтых проводов, так как по ним поступает питание.
  2. Замкнуть перемычкой контакты, отвечающие за защиту от перенапряжения, чтобы наш блок питания не выключался от перенапряжения.
  3. Заменяем на плате с микросхемой TL 431 встроенный резистор на резистор 2,7 кОм, для установки выходного напряжения 14,4в.
  4. Добавляем резистор 200 Ом мощностью 2 Вт на выход с канала 12в, для стабилизации напряжения.
  5. Добавляем резистор 68 Ом мощностью 0,5 Вт на выход с канала 5в, для стабилизации напряжения.
  6. Выпаиваем транзистор на плате с микросхемой TL 431, для устранения препятствий при установке напряжения.
  7. Заменяем стандартный резистор, в первичной цепи обмотки трансформатора, на резистор 0,47 Ом мощностью 1 Вт.
  8. Собираем схему защиты от неправильного подключения к аккумулятору.
  9. Выпаиваем из блока питания ненужные части.
  10. Выводим необходимые провода из блока питания.
  11. Припаиваем клеммы к проводам.

Для удобства пользования зарядным устройством подключите амперметр.

Преимуществом такого самодельного устройства является отсутствие возможности перезарядки батареи.

Простейшее устройство с использованием адаптера

адаптер для прикуривателя

Теперь рассмотрим случай, когда в наличии нет ненужного блока питания, наш аккумулятор сел и его нужно зарядить.

У каждого хорошего хозяина или поклонника всяких электронных приборов, имеется адаптер для подзарядки автономной техники. Любой 12в адаптер, можно использовать для зарядки автомобильного аккумулятора.

Главным условием такой зарядки является не меньшее выдаваемое напряжение источником, чем у аккумулятора.

Ход выполнения работ:

  1. Необходимо отрезать разъем с окончания провода адаптера и счищаем изоляцию не меньше 5 см.
  2. Так как провод идет сдвоенный, необходимо его разделить. Расстояние между окончанием 2 проводов, должно быть, не меньше 50 см.
  3. Припаиваем или приматываем к окончаниям провода клеммы для надежной фиксации на аккумуляторной батарее.
  4. Если клеммы одинаковые, то нужно позаботиться о нанесении на них знаков различия.
  5. Самое большое неудобство этого способа заключается в постоянном контроле над температурой адаптера. Так как если адаптер перегорит, то это может вывести аккумулятор с рабочего состояния.

Перед включением адаптера в сеть, необходимо сначала подключить его к аккумулятору.

Зарядное устройство из диода и бытовой лампочки

схема акб из лампочки и диода

Диод – это полупроводниковый электронный прибор, который способен проводит ток в одном направлении, имеет сопротивление, приравненное к нулю.

В качестве диода будет использован адаптер зарядки к ноутбуку.

Для изготовления такого вида устройства, нам потребуется:

  • адаптер зарядки к ноутбуку;
  • лампочка;
  • провода длиной от 1 м;

Каждый зарядный прибор для автомобиля выдает около 20в напряжения. Так как диод его заменяет адаптер и пропускает напряжение только в одну сторону, он защищен от короткого замыкания, которое может случиться при неправильном подключении.

Чем больше мощность лампочки, тем быстрее происходит заряд аккумулятора.

Ход выполнения работ:

  1. К плюсовому проводу адаптера ноутбука подсоединяем нашу лампочку.
  2. От лампочки бросаем провод на плюс.
  3. Минус от адаптера напрямую подключаем к аккумулятору.

В случае правильного подключения, наша лампочка будет светиться, потому что ток на клеммах низкий, а напряжение большое.

Также, нужно помнить, что правильная зарядка предусматривает среднюю силу тока в пределах в 2-3 ампера. Подключение лампочки высокой мощности, приводит к повышению силы тока, а это, в свою очередь, пагубно влияет на аккумулятор.

Исходя из этого, подключать лампочку высокой мощности можно только в особых случаях.

Этот способ предусматривает постоянное наблюдение и измерение напряжения на клеммах. Перезаряд батареи приведет к обильному выделению водорода, и она может выйти из строя.

При зарядке АКБ таким способом, постарайтесь находиться возле прибора, так как временное оставление его без присмотра может привести к выходу из строя прибора и АКБ.

Проверка и настройка

акб

Для проверки нашего прибора необходимо наличие исправной автомобильной лампочки. Сначала, с помощью провода подключаем нашу лампочку к зарядке, помня о соблюдении полярности. Включаем зарядку в сеть и лампочка загорелась. Все работает.

Еще по теме:  Кто такой пророк Ютуб

Каждый раз, перед использованием самодельного заряжающего прибора, проверяйте его на работоспособность. Такая проверка исключит все возможности вывести из строя ваш аккумулятор.

Порядок зарядки автомобильного аккумулятора

зарядка АКБ

Довольно большое количество автовладельцев считают зарядку аккумулятора очень простым дело.

Но в этом процессе существует некоторое количество нюансов, от которых зависит продолжительная работа батареи:

Перед тем, как поставить батарею на зарядку, необходимо провести ряд необходимых действий:

  1. Используйте химически стойкие перчатки и очки.
  2. После снятия аккумулятора тщательно осмотрите его на признаки механических повреждений, следов вытекания жидкости.
  3. Выкрутить защитные крышки, для выхода выделяемого водорода, во избежание закипания аккумулятора.
  4. Тщательно присмотритесь к жидкости. Она должна быть прозрачная, без хлопьев. Если цвет жидкости темный и имеются признаки осадка, немедленно обращайтесь за помощью к специалистам.
  5. Проверить уровень жидкости. Исходя из действующих стандартов, на боковой стороне АКБ имеются пометки, «минимум и максимум» и если уровень жидкости ниже требуемого, необходимо его пополнить.
  6. Заливать необходимо только дистиллированную воду.
  7. Не включайте зарядный прибор в сеть, пока не подключены крокодилы к клеммам.
  8. Соблюдайте полярность при подсоединении крокодилов на клеммы.
  9. Если в процессе зарядки будут слышны звуки кипения, то отключите прибор от сети, дайте время остыть АКБ, проверьте уровень жидкости и после этого можно заново подключить зарядное устройство к сети.
  10. Следите чтобы, АКБ не перезаряжался, так как от этого зависит состояние его пластин.
  11. Проводите зарядку АКБ только в хорошо проветриваемых помещениях, так как в процессе заряжания выделяются токсические вещества.
  12. Электрическая сеть должна иметь установленные автоматы, отключающие сеть в случае ее замыкания.

После того, как вы поставите аккумулятор на зарядку, со временем ток будет падать, а напряжение на клеммах будет возрастать. Когда напряжение достигнет 14,5в – зарядку стоит прекратить выключением из сети. При достижении напряжения более 14,5в, аккумулятор начнет кипеть, а пластины освобождаться от жидкости.

Важно. Никогда не перезаряжайте свой аккумулятор, это может привести к потере его емкости и выходу из строя.

Источник: slarkenergy.ru

Схемы, как сделать зарядное устройство для автомобильного аккумулятора своими руками

Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.

Чтобы добиться этих параметров, понадобится:

  1. Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
  2. Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
  3. Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
  4. Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
  5. Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.

Этого достаточно, чтобы собрать простое зарядное устройство.

↑ Схема ЗУ № 7 (TL494)

ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4. В схему введены дополнительно режимы.
1. «Калибровка — заряд» — для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора. 2. «Сброс» — для сброса ЗУ в режим заряда. 3. «Ток — буфер» — для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2.

Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Схема зарядного устройства для автомобильного аккумулятора

Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.

Простые схемы

Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.

С 1 диодом

Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.

Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.

С диодным мостом

Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.

Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.

Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.

С диодным мостом и конденсатором

Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.

Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.

Схемы с регулировкой

Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.

Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.

Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.

Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.

Подробное видео можно посмотреть ниже.

↑ Схема ЗУ № 4 (TL494)

ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.
Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе.

Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей. Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

Порядок сборки зарядного устройства для автомобильного аккумулятора

По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.

Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ.

К выводам № 2 нужно припаять сетевой шнур.

Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.

В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.

Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).

Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.

Еще по теме:  Как увеличить зрителей в Ютубе

Простые зарядные устройства с ручной регулировкой

Начнем с простых устройств, позволяющих вручную регулировать параметры зарядки. Поскольку большинство аккумуляторных батарей легковых автомобилей имеет емкость не более 100-120 Ач, зарядного устройства, обеспечивающего ток до 10 ампер, будет вполне достаточно.

Простой регулятор с балластными конденсаторами

Сделать такое зарядное устройство, не имеющее дефицитных деталей, сможет каждый, умеющий пользоваться мультиметром и держать в руках паяльник. Взглянем на схему, приведенную ниже.

Схема простого зарядного устройства с балластными конденсаторами

Устройство состоит из понижающего трансформатора Tr1, мощного выпрямителя, собранного на диодах VD1-VD4 и набора конденсаторов разной емкости С1-С4. Каждый из конденсаторов может включаться в цепь питания трансформатора при помощи отдельного выключателя S2-S4. Емкости конденсаторов подобраны так, что каждый последующий обеспечивает выходной ток ЗУ вдвое больший, чем предыдущий.

В зависимости от номинала и количества подключенных конденсаторов будет изменяться выходное напряжение, а значит, и зарядный ток. Комбинируя конденсаторы выключателями S2-S4, можно изменять зарядный ток от 1 до 15 А с шагом 1 А, что более чем достаточно для зарядки любой АКБ.

Напряжение на клеммах аккумуляторной батареи, подключенной к клеммам XS2, XS3, можно контролировать при помощи вольтметра PU1. Величину зарядного тока покажет амперметр PA1. Выключателем питания служит тумблер S1.

В конструкции можно использовать любой сетевой трансформатор (можно самодельный), обеспечивающий ток не менее 10 А при выходном напряжении 22-24 В. Диоды Д305 можно заменить на любые выпрямительные, рассчитанные на прямой ток не менее 10 А и выдерживающие обратное напряжение не ниже 40 В. Диоды выпрямительного моста необходимо установить на изолированные друг от друга радиаторы с площадью рассеяния не менее 100 см2 каждый.

Важно! Если полупроводники будут устанавливаться на один общий радиатор, то это нужно делать через изолирующие слюдяные прокладки. При этом рассеиваемая площадь радиатора выбирается не менее 300 см2 .

Конденсаторы C2-C4 – неполярные, бумажные, рассчитанные на рабочее напряжение не ниже 300 В. Подойдут, к примеру, МБГЧ, МБГО, КБГ-МН, МБМ, МБГП, которые широко использовались в качестве фазосдвигающих для асинхронных двигателей бытовой техники. На месте PU1 может работать любой вольтметр постоянного тока с пределом измерения 30 В. PA1 – амперметр с пределом измерения 20-30 А, в качестве которого удобно использовать любой микроамперметр с соответствующим шунтом.

С плавной регулировкой тока зарядки

Следующая схема сложнее, где в качестве регулирующего элемента использует тиристор. Преимущество данной конструкции – плавная регулировка выходного напряжения, а значит, и зарядного тока. Диапазон регулировки – 0-10 А. Принцип работы СЗУ – фазоимпульсное управление ключом (тиристором).

Прибор состоит из силового трансформатора T1, выпрямительного моста, собранного на мощных диодах VD1-VD4, и схемы регулировки тока, собранной на транзисторах VT1, VT2 и тиристоре VS1. Переменное напряжение величиной 18-22 В поступает со вторичной обмотки силового трансформатора на выпрямительный мост. Выпрямленное, оно подается на схему регулировки. В начале полуволны начинает заряжать конденсатор С2. Скорость его зарядки можно плавно регулировать переменным резистором R1.

Как только конденсатор зарядится до определенной величины, откроется аналог однопереходного транзистора, собранный на элементах VT1, VT2. Конденсатор быстро разрядится через управляющий электрод тиристора, последний откроется и будет находиться в таком состоянии до окончания этой полуволны. При появлении следующей процесс повторится.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой (зависит от времени заряда конденсатора С2), отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет приложено к клеммам аккумулятора, а значит, и зарядный ток будет ниже.

В качестве силового подойдет любой сетевой трансформатор с напряжением на вторичной обмотке 18-22 В при токе не менее 10 А. На месте VT1, кроме указанного, могут работать КТ361Б-КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж-KT501K. Вместо КТ315А подойдут КТ315Б-Д, КТ3102А, КТ312Б, КТ503В-Г, П307. В качестве С2 могут использоваться конденсаторы типа МБГП, К73-17, К42У-2, К73-16, К73-11 емкостью 0.47-1 мкФ. Вместо КД105Б подойдут КД105В, КД105Г или Д226 с любой буквой. Переменный резистор R1 типа СПО-1, СП-1, СПЗ-30а.

Амперметр PA1 – любой с током полного отклонения 10 А. Вместо мощных выпрямительных диодов Д245 подойдут любые из серий КД213, КД203, Д245, КД210, Д242, Д243, выдерживающие ток не менее 10 А и обратное напряжение на ниже 50 В. Их необходимо установить на радиаторы площадью не менее 100 см2. Тиристор КУ202В можно заменить на КУ202Г-Е и даже на Т-160 или Т-250. Он тоже устанавливается на радиатор.

Полезно! Если выходное напряжение трансформатора несколько выше 22 В (скажем, 24-28 В), то можно использовать и его. Единственное, при этом необходимо номинал резистора R5 увеличить до 200 Ом.

С зарядкой ассиметричным током

Это зарядное устройство имеет предел регулировки тока от 0 до 10 А и производит зарядку ассиметричным током, при котором определенное время батарея заряжается, а остальную часть – разряжается током около 600 мА. Это существенно продлевает жизнь АКБ и предотвращает сульфатацию.

Здесь регулировка зарядного тока производится по высокому переменному напряжению при помощи симметричного тиристора (симистора). Принцип регулировки тот же, что и в предыдущей схеме, – фазоимпульсное управление. Но схема регулятора выглядит и работает несколько иначе.

В начале положительной полуволны зарядка конденсатора С2 происходит через резистор R3 и диод VD1 диодного моста VD1-VD4. Как только конденсатор зарядится до напряжения зажигания газоразрядной лампы HL1 (время зарядки зависит от положения движка переменного резистора R1), последняя зажжется. Конденсатор быстро разрядится через управляющий электрод симистора, и он откроется, подавая напряжение на сетевую обмотку понижающего трансформатора Т1.

В таком состоянии симистор будет находиться до окончания полупериода. При отрицательной полуволне конденсатор будет заряжаться через резистор R5 и диод VD2. При этом полярность напряжения будет противоположной предыдущей. Снова разряд в лампе, тиристор открывается, пропуская на обмотку уже отрицательную полуволну.

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Любопытно! Резисторы R3 и R5 исполняют еще одну немаловажную роль. Они попеременно через диоды VD3 и VD4 шунтируют сетевую обмотку трансформатора. Это предотвращает закрывание симистора сразу после короткого открывающего импульса на время, пока ток в обмотке Т1, являющейся индуктивной нагрузкой, не установится выше тока удержания симмитричного тиристора.

Пониженное напряжение, величина которого зависит от положения движка R1, выпрямляется диодами VD5, VD6 и подается на клеммы аккумуляторной батареи, производя ее зарядку выбранным нами током. После закрытия симистора и до следующего его открытия батарея разряжается через нагрузочный резистор R6, обеспечивающий разрядный ток порядка 600 мА.

Зарядный ток можно контролировать при помощи амперметра PA1, прибор PV1 показывает напряжение на клеммах АКБ.

Важно! Устанавливая величину зарядного тока по амперметру, необходимо учитывать и ток (600 мА), протекающий через резистор R6. То есть, если мы установим на приборе 6 А, фактический зарядный ток, протекающий через АКБ, будет составлять 6 – 0.6 = 5.4 А.

О деталях. В качестве сетевого подойдет любой трансформатор соответствующей мощности (выдаваемый ток не менее 10 А) с выходным напряжением 20 В и отводом от середины. Если вторичная обмотка не имеет отвода от середины, то можно использовать выпрямитель, собранный по мостовой схеме. Диоды VD5, VD6 – любые мощные выпрямительные на ток не менее 10 А и обратное напряжение не ниже 40 В.

VD1-VD4 можно заменить на любые выпрямительные, выдерживающие ток не менее 200 мА и напряжение 300 В. Конденсаторы С1, С2 – пленочные или бумажные, неполярные. Симистор можно заменить на КУ208В. Амперметр PA1 имеет предел измерения 15-20 А, вольтметр PV1 – 20 В. Мощные выпрямительные диоды VD5, VD6 и симистор VS1 необходимо установить на радиаторы. При этом диоды можно установить на общий радиатор без изолирующих прокладок. Диоды VD1-VD4 в радиаторе не нуждаются.

Автозарядка из блока питания

Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.

В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.

Далее нужно просто действовать по инструкции:

  1. Все провода, кроме желтых и черных, нужно обрезать.
  2. Спаиваем их между собой: желтые с желтыми, черные с черными.
  3. На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
  4. В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
  5. Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.

В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.

Источник: inventori-steam.ru

Как сделать зарядное устройство для аккумулятора — проектирование и создание устройства своими руками

Стартерные автомобильные аккумуляторы относятся к электрохимическим источникам тока, которые при зарядке аккумулируют электрическую энергию, а при разряде возвращают ее в нагрузку.

Еще по теме:  Как отписаться в Ютубе на Айфоне

Содержимое обзора

Устройство, принцип действия

Аккумулятор состоит из двух свинцовых пластин, погруженных в раствор серной кислоты. Одна из них является анодом, другая – катодом. В результате взаимодействия свинца с серной кислотой на поверхности пластин образуется сульфат свинца PbSO4.

Для заряда аккумулятора нужно приложить к аноду положительное напряжение, а к катоду – отрицательное, после чего на аноде начнет образовываться двуокись свинца PbO2, а на катоде – губчатый свинец Pb.

  • При разряде происходит обратное восстановление до сульфата свинца.
  • Напряжение полностью заряженного аккумулятора составляет около 2,12 В.
  • Стартерная аккумуляторная батарея с номинальным напряжением 12 В содержит шесть аккумуляторов, соединенных последовательно.
  • Следовательно, то, что в просторечье часто называют «аккумулятором», на самом деле является аккумуляторной батареей.

Заряжают АКБ с помощью специальных зарядных устройств ЗУ («зарядок»), которые можно приобрести в автомагазине, но можно изготовить и самостоятельно.

Основные параметры

АКБ характеризуется различными параметрами, главными из которых являются:

  • Номинальный разрядный ток Iн – это ток, который АКБ может в течение 20 часов отдавать в нагрузку, и при этом напряжение на ее выводах не опускается ниже 10,5 В;
  • Номинальная емкость С20, измеряется в Ач. Это количество энергии, которое может отдать АКБ за 20 часов при разряде номинальным током. Величина Iн определяется как результат деления С20 на 20. Например, для емкости 60 Ач он равен 3 А;
  • Фактическая емкость Сф – используется для оценки батареи – чем Сф больше, тем батарея лучше;

Методы зарядки

АКБ считается полностью заряженной, если ее напряжение при разомкнутой цепи нагрузки (НРЦ) больше или равно 12,7 В, при этом плотность электролита при температуре 25°С должна быть равной 1,28 г/см³. При заряженности на 75% эти значения составляют 12,35 и 1,22, а при полностью разряженных аккумуляторах – 11,7 и 1,1 соответственно.

При остаточной емкости менее 75% батарею рекомендуется дозарядить.

Примечание: НРЦ измеряется не раньше, чем через час после окончания зарядки. За это время должна исчезнуть э.д.с поляризации, возникающая в результате образования ионов возле анода и катода.

Существует несколько методов зарядки, как правило, они изложены в руководстве по эксплуатации. Если руководство отсутствует, то следует использовать способы по ГОСТ Р 53165 или комбинированный.

Зарядка открытых батарей (с общей крышкой):

  • Стабилизированным током 2 Iн до стабилизации напряжения, измеренного три раза с интервалом 15 минут;
  • Постоянным напряжением до16 В с ограничением тока до 5 Iн в течение 20 часов, затем четырехчасовая зарядка стабилизированным током Iн.

Зарядка закрытых батарей (с предохранительным клапаном, с загущенным электролитом):

  • Стабилизированным током 2 Iн до 14,4В, затем 4 часа током Iн;
  • Постоянным напряжением до14,4 В с ограничением тока до 5 Iн в течение 20 часов, затем четырехчасовая зарядка стабилизированным током 0,5 Iн.

Зарядка комбинированным способом производится током 2 Iн до 14,4В, затем при стабилизированном напряжении 14,4 В до уменьшения зарядного тока до 0,1Iн.

Достоинства и недостатки различных способов

  • 1а и 2а обеспечивают 100% заряд за минимальное время.
  • 1б и 2б рекомендуется проводить при отсутствии данных о батарее, но это самый длительный способ.
  • алгоритм третьего способа заложен в большинство автоматизированных «зарядок» и тоже обеспечивает 100% заряд за короткое время.

Общие недостатки – если ЗУ не обладает возможностью автоматически контролировать заданные параметры, то для предотвращения перезаряда требуется постоянный контроль оператора.

Нужно учитывать, что при превышении длительности заряда начинается электролиз воды с образованием газообразного водорода и кислорода. При этом количество воды в электролите уменьшается безвозвратно, и, со временем, ее придется доливать.

Наличие водорода в воздухе при возникновении случайной искры может привести к взрыву, сопровождаемого разрушением аккумулятора и выбросом электролита в окружающую среду. Попадание кислоты на поверхностные ткани человека может привести к химическим ожогам.

Самостоятельное изготовление зарядного устройства

Если ЗУ изначально отсутствует, то перед автолюбителем возникает дилемма: сделать зарядку для аккумулятора своими руками или приобрести готовую.

Обычно самостоятельно изготавливают люди, имеющие определенные знания и опыт работы с устройствами электронной техники, располагающие различными электротехническими элементами и радиодеталями.

Начинать изготовление нужно с проработки схемы устройства. Схему для зарядки можно разработать самостоятельно или позаимствовать из технических журналов, книг, интернета и т.д. Самых различных вариантов как сделать зарядку существует великое множество, поэтому ориентироваться в первую очередь нужно на свои возможности.

Ниже приведены примеры наиболее распространенных вариантов ЗУ.

Нерегулируемые ЗУ, гальванически связанные с сетью

Величина зарядного тока определяется сопротивлением лампы, выполняющей роль балластного сопротивления.

Выходной зарядный ток можно приблизительно рассчитать, как результат деления величины мощности лампы на напряжение сети, равное 220 В.

Например, для лампы 100 Вт: Iз = 100/220 = 0,45 А. При параллельном соединении двух и более ламп Iз увеличиться до 0,9 А, 1,35 А и т.д.

Схема с однополупериодным выпрямителем, изображенная справа, имеет вдвое меньший ток. Время заряда тоже увеличивается, т.к средняя величина тока в 2 раза меньше.

Отсутствие гальванической развязки повышает опасность поражения током, что является очень большим недостатком, несмотря на простоту и дешевизну устройства.

  • Зарядка токами, большими рекомендованных, требует контроля температуры электролита: при возрастании ее до 45°С нужно выключить ЗУ и дождаться снижения до 30 – 35°С.
  • Пульсации и форма зарядного тока не имеют значения, важна лишь его средняя величина.

ЗУ с понижающим трансформатором

  • Защита первичных и вторичных цепей осуществляется предохранителями, для измерения зарядного тока и напряжения служат амперметр А и вольтметр V.
  • Напряжение вторичной обмотки трансформатора 14 – 16 В, номинальный ток предохранителя вторичной обмотки 10 – 30 А, в зависимости от емкости АКБ, ток сетевого предохранителя 3 – 5 А.

Достоинство схем – небольшое количество элементов. Существенным недостатком является зависимость величины зарядного тока от напряжения сети: при его увеличении на 10%, ток может увеличиться в несколько раз. Поэтому для ограничения тока желательно в зарядную цепь включить реостат.

Устройства с ручным регулированием

Регулировка производится подачей на базу эмиттерного повторителя VT2,VT1 управляющего напряжения, снимаемого с движка потенциометра R1.

  • Схема надежно работает, проста в изготовлении. б) на Рис. 5 изображена схема очень распространенного устройства, позволяющего потенциометром R5 плавно регулировать выходной ток или напряжение от нуля до максимума.
  • По мере спадания тока во время зарядки оператор может вручную корректировать его значение в желаемых пределах.
    Разновидностью этого технического решения являются схемы Рис.6,7, в которых в качестве компаратора используется аналог однопереходного транзистора.

Изготовление таких устройств не требует высокой квалификации, они надежно работают, рекомендуются к применению для широкого круга автовладельцев.

Подробное описание этих схем содержится в книге Т. Ходасевича «Зарядные и пуско-зарядные устройства».

ЗУ с дискретным регулированием

Регулировка тока и напряжения производится с помощью набора балластных конденсаторов С1 – С4 и тумблеров S1 – S4.

  • Включением тумблеров S1 – S4 в различных сочетаниях, можно ступенчато регулировать ток с дискретностью примерно в 1 А.
  • Всего существует 16 комбинаций положений тумблеров, т.е схема реализует 16 значения зарядного тока и напряжения, что вполне достаточно для качественной зарядки.
  • Схема надежная, хорошо себя зарекомендовала, но требует тщательного согласования величины емкостей С1 – С4 с напряжением вторичной обмотки.
  • После сборки нужно произвести предварительную проверку и настройку на активной нагрузке, например, на автомобильных лампах.

В этом устройстве на выводы батареи подаются прямоугольные импульсы выпрямленного напряжения с регулируемой скважностью (соотношение длительности импульсов и пауз между ними). От нее зависит величина среднего зарядного тока.

Регулировка производится потенциометром Р5, задающего скважность генератора, собранного на микросхеме DD. Более подробная информация об этой схеме содержится в №11 журнала «Радио» за 2011 г.

Требования к конструкции

Зарядное устройство должно быть смонтировано в закрытом корпусе.

  1. Если корпус металлический, то должна быть предусмотрена возможность его заземления.
  2. Все токоведущие части напряжением 220 или 380В должны быть недоступны прикосновению.
  3. Должна быть предусмотрена защита от коротких замыканий и сверхтоков предохранителями или автоматическими выключателями с электромагнитными расцепителями.
  4. Подсоединение ЗУ к выводам аккумулятора должно производиться гибкими медными проводами с зажимами типа «крокодил» или другими, обеспечивающими надежный электрический контакт.
  5. Рукоятки зажимов должны быть заизолированы трубками ПВХ или изоляционной лентой. Цвет изоляции положительного провода красный, отрицательного – синий или черный.
  6. Сечение проводов не ниже 2,5 мм².

Образцом подобного устройства может служить ЗУ, изготовленное на базе компьютерного блока питания, изображенное на фото 1. Элементы устройства должны быть надежно соединены между собой пайкой, скруткой или болтовым соединением.

Для снижения рабочей температуры выпрямительных диодов, тиристоров и силовых транзисторов их корпуса устанавливаются на радиаторы, как показано на Фото 2.

Если схема содержит большое количество радиоэлементов, то рекомендуется объединять их на печатных или макетных платах с помощью объемного монтажа. Фото 3 иллюстрирует внешний вид такой платы.

Для снижения затрат на изготовление зарядных устройств рекомендуется не приобретать в радиомагазинах комплектующие элементы, а использовать их от ненужной аппаратуры, иначе самодельные ЗУ могут оказаться дороже новых импортных китайских. Основное условие их применения – чтобы они были исправны и сохраняли свои характеристики.

Источник: sdelatrykami.ru

Рейтинг
( Пока оценок нет )
Загрузка ...